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R ecent progress in generative artificial intelligence (AI) has 
given rise to large language models (LLMs) that can be prompted to craft 
persuasive essays,1 pass professional competency examinations,2-4 and 

write patient-friendly empathetic messages.5 Amid growing recognition of the capa-
bilities of LLMs, many people have expressed concerns about their use in medicine 
and health care, citing known risks of confabulation, fragility, and factual inaccu-
racy.6 As these risks are measured and mitigated, some of the unresolved questions 
that are coming into focus concern the “human values” that will remain embedded 
in AI models, both in their creation and in their use, and how the “values of an LLM” 
may not align with human values even if LLMs no longer confabulate and have been 
scrubbed of obvious toxic output. Such human values pertain broadly to the princi-
ples, standards, and preferences that reflect human goals and guide human behav-
iors (see the Glossary). As we review here, LLMs and new foundation models, as 
technically impressive as they are, are only the latest incarnation in a long line of 
probabilistic models that have been integrated into medical decision making, which 
have all required that their creators and implementers make value judgments.

Many of the challenges we address here were evident to the pioneers of medical 
decision analysis of the 1950s7 and to scholars in subsequent decades8-11 who con-
ducted careful and creative studies of both human and algorithmic decision mak-
ing to disentangle probability (i.e., the chance of an event occurring) from utilities 
(i.e., the quantified value judgments that are often only indirectly articulated in 
much of medical decision making). The nuanced understanding of individual val-
ues and risks is what makes the thoughtful clinician so indispensable. These con-
siderations have renewed relevance with unprecedented and ubiquitous AI models 
such as LLMs. In this article, we first describe how value judgments enter predictive 
models in the context of familiar clinical equations and new AI language models. 
We then connect early work in reasoning about probabilities and utilities to the 
emerging issues of newer AI models and identify unresolved challenges and future 
opportunities in designing high-performance and safe AI models.

A I a nd Hum a n Va lues

Myriad examples have illustrated how the data used in training AI models encode 
individual and societal values that may become cemented in the model. These 
examples have spanned a range of applications, including automated interpreta-
tion of chest radiographs,12 classification of skin diseases,13 and algorithmic deci-
sions about the allocation of health care resources.14 As described recently in the 
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Journal,15 biased training data may both amplify 
and reveal the values and biases present in soci-
ety. Conversely, studies have also shown that AI 
can be used to reduce bias. For example, re-
searchers applied deep-learning models to ra-
diographs of the knee and identified factors 
within the knee that were missed by standard 
severity measures graded by radiologists, there-
by reducing unexplained pain disparities be-
tween Black and White patients.16

Despite growing recognition of bias in AI 
models, particularly with respect to training 
data, less appreciated are the many additional 
entry points for human values along the develop-
ment and deployment journey of an AI model. 

Explicit considerations and modeling of human 
values and how they interact with risk assessment 
and probabilistic reasoning have been largely ab-
sent amid the otherwise impressive recent suc-
cesses of medical AI.

A Motivating Clinical Example

To make these abstract concepts concrete, imag-
ine that you are an endocrinologist who has 
been asked to prescribe recombinant human 
growth hormone to an 8-year-old boy whose 
height has fallen below the third percentile for 
his age, who has a poststimulation human 
growth hormone level of less than 2 ng per mil-
liliter (reference value, >10 ng per milliliter and 
>7 ng per milliliter in many countries outside 
the United States), and who was found to have a 
rare loss-of-function mutation in the gene en-
coding human growth hormone. We posit that 
in this clinical scenario, proceeding with human 
growth hormone treatment is straightforward 
and uncontroversial. Much more controversial 
would be the administration of human growth 
hormone treatment to a 14-year-old boy whose 
height has consistently been at the 10th percen-
tile for his age, who has a poststimulation hu-
man growth hormone peak of 8 ng per millili-
ter, who has no known functional mutations 
that affect height or other known cause of short 
stature, and who has a bone age of 15 years (i.e., 
not delayed). Only part of the controversy is due 
to divergence in the threshold for human growth 
hormone level that experts, informed by dozens 
of studies, used in making the diagnosis of iso-
lated growth hormone deficiency.17 At least as 
much of the controversy stems from the risk–
benefit trade-off as seen from the perspective of 
the patient, the patient’s parents, the health 
professional, the pharmaceutical company, and 
the payer. The pediatric endocrinologist might 
weigh the rare adverse effects of 2 years of daily 
injections of growth hormone against the likeli-
hood of no or minimal gain in adult stature. The 
boy might think that even the possibility of a 
2-cm gain in height is worth the effort, but the 
payer and the pharmaceutical company may dis-
agree.

In 2024, the second clinical scenario de-
scribed above would have a default recommen-
dation from an LLM, such as the Generative 
Pretrained Transformer 4 (GPT-4) model. The 

Glossary

Alignment: The degree to which the behaviors and  
actions of an artificial intelligence (AI) system  
are congruent with human values.

Generative AI: A form of AI designed to produce new 
and original data outputs, including those that re-
semble human-made content, with a range of out-
put types that span text, code, images, audio, and 
video.

Human Values: A broad term for the principles, stan-
dards, and preferences that reflect human goals and 
guide human behaviors.

Large Language Model (LLM): A type of AI model that in-
terprets and generates text. LLMs are often pre-
trained with large text corpora and then fine-tuned 
through supervised fine-tuning and reinforcement 
learning from human feedback.

Model Card: A document that includes a comprehen-
sive overview and performance characteristics of a 
machine-learning model, for example, training and 
evaluation data and training procedure; existing 
evaluations, for example, observed safety or bias 
challenges and existing remediation strategies; in-
tended use cases; and model performance across 
populations, for example, key demographic or clini-
cal groups). A model card is similar to the “System 
Card” for GPT-4.37

Reinforcement Learning from Human Feedback: A meth-
od of fine-tuning LLMs where humans rank responses 
to prompts; reinforcement learning is then used to 
adjust the output to align with human preferences.

Supervised Fine-Tuning: A method of fine-tuning LLMs 
that uses human-written responses to example 
prompts.

Utility: The quantitative measure used in decision analy-
sis to assess the value of a health state or outcome. 
Utilities may be elicited directly from individual pa-
tients or groups, or they can be learned from data. 
Utilities may be applied to persons, groups, or pop-
ulations.
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recommendation would reflect not only the data 
used to train the LLM but also the method by 
which the model was trained, such as supervised 
fine-tuning and reinforcement learning from 
human feedback (described below). Beyond this, 
each person or party involved in the second 
clinical scenario — the patient, the parents, the 
physician, the drug maker, and the payer — 
could instruct GPT-4 to include custom values 
(i.e., instructions to tailor model output) to re-
flect their viewpoints (Fig. 1). This “tunability” 
of the model output is a desirable feature of 
these models, but it raises several questions. 
Whose values do a given AI model reflect? Will 
AI models facilitate rational decision making 
that reflects the values of the patient or those of 
other parties? How will financial forces shape 
the creation and use of these models in medi-
cine? How steerable should an AI model be when 
used by a physician for an evaluation and treat-
ment plan?

At every stage of model creation and model 
use, human values enter (Fig.  2). We illustrate 
this first with a simple statistical model familiar 
to clinicians (the estimated glomerular filtration 
rate [eGFR]), and then, in the context of LLMs, 
we show that beyond the data underlying an AI 
model, factors such as the model design, train-
ing, and use, including how the models are 
prompted, encode human values. These exam-
ples are not intended to be exhaustive but only 
to illustrate how human values enter across the 
spectrum of model complexity.

Implicit and Explicit Values in Familiar 
Clinical Equations

Consider the creatinine-based eGFR, a wide-
spread index of kidney function used to diag-
nose and stage chronic kidney disease, as well as 
to set eligibility thresholds for kidney transplan-

tation or donation and to determine dose reduc-
tions and contraindications for many prescrip-
tion drugs.18 The eGFR is a simple regression 
equation that was developed to estimate the 
measured glomerular filtration rate (mGFR), 
which is the reference standard but more oner-
ous to assess.19 This regression equation could 
hardly be considered to be an AI model but 
nonetheless illustrates many principles about 
human values and probabilistic reasoning.

Human values first enter into the eGFR 
through the selection of data used to fit the 
equation. Most of the original cohorts used to 
develop the eGFR equation comprised Black and 
White participants20,21; generalizability to many 
other racial groups was unknown. Human val-
ues further enter into this equation in the choice 
of accuracy with respect to mGFR as the pri-
mary target in assessing kidney function, in 
what constitutes an acceptable accuracy level, in 
how accuracy should be measured, and in the 
use of the eGFR as a threshold to trigger clinical 
decisions, such as determination of eligibility for 
transplantation or prescription drugs. Finally, 
values enter in the choice of inputs to the model. 
For example, until 2021, guidelines22 recom-
mended adjusting creatinine levels in the eGFR 
equation on the basis of a patient’s age, sex, and 
race (categorized only as Black or non-Black). 
Race adjustment was introduced to improve the 
accuracy of the equation with respect to the 
mGFR, but in 2020, major hospitals started 
challenging race-based eGFR, citing concerns 
that include delayed transplantation eligibility 
and the reification of race as biology.23,24 Studies 
showed that how the eGFR model is formulated 
with regard to race can have profound and vary-
ing effects on both accuracy and clinical out-
comes25-27; thus, a selective focus on accuracy or 
on a subset of outcomes reflects value judgments 

Key Points

Medical Artificial Intelligence and Human Values

•	 As large language models and other artificial intelligence models are used more in medicine, ethical 
dilemmas can arise depending on how the model was trained. A user must understand how human 
decisions and values can shape model outputs. Medical decision analysis offers lessons on measuring 
human values.

•	 A large language model will respond differently depending on the exact way a query is worded and how 
the model was directed by its makers and users. Caution is advised when considering the use of model 
output in decision making.
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Identical Case Presented to Three GPT-4 Sessions:

1.
2.
3.

14-year-old male
Height consistently at the 10th percentile for age
Poststimulation peak in growth hormone level of 8 ng per milliliter, no significant mutations or other pathological findings, and a bone age of 15
(i.e., not delayed).

A Instructing GPT-4 to Be a Pediatric Endocrinologist

Human: You are a pediatric endocrinologist. Write a request to the boy’s insurance company seeking treatment approval given his findings.

GPT-4: Dear Claims Reviewer,
I am writing to request pre-authorization for growth hormone therapy for my patient, [Patient’s Name], a 14-year-old male who ... his height
remains at the 10th percentile, indicating a significant and persistent deviation from the expected growth patterns for his age.

Clinical assessment and investigations have revealed the following: ...

Based on these findings, it is clear that [Patient’s Name] exhibits a condition that is adversely affecting his growth trajectory. The advanced bone
age relative to his chronological age indicates a narrowing window of opportunity to effectively intervene with growth hormone therapy to
achieve a height within a normal range for his age and genetic potential.

Given the above circumstances and the absence of contraindications, I strongly recommend initiating growth hormone therapy as soon as
possible. Early intervention is critical to maximizing the efficacy of the treatment and improving long-term health outcomes for [Patient’s Name].

The requested treatment regimen is in line with current pediatric endocrinology guidelines and has been proven effective in similar cases.
Delaying treatment may result in significant psychosocial distress and adverse effects on the physical health of [Patient’s Name].

Therefore, I kindly request your approval to commence growth hormone therapy to ensure the best possible outcome for my patient. ...

GPT-4: Dear Dr. [Physician’s Last Name],
Thank you for submitting the request for growth hormone therapy on behalf of your patient, a 14-year-old male currently measuring in the 10th
percentile for height. We appreciate your dedication to his health and wellbeing.

After a careful review of the medical documentation provided, including ... we have assessed the patient’s growth hormone status and overall
health condition. ... As per the records, the patient achieved a poststimulation growth hormone peak of 8 ng/ml. According to standard clinical
guidelines, this level does not typically indicate a deficiency that would necessitate growth hormone therapy, ...

Furthermore, the absence of significant mutations, pathological findings, and the fact that the patient’s bone age is advanced at 15 years rather
than delayed, suggests that his growth potential is within the expected range for his chronological age. ...

Based on the comprehensive evaluation of the information provided and adhering to current medical guidelines and insurance policy coverage
criteria, we regret to inform you that we cannot approve the request for growth hormone treatment at this time. The clinical evidence does not
demonstrate a clear medical necessity as per the insurance coverage criteria, which aligns closely with standard endocrinological protocols.

We understand that this may not be the decision you were hoping for, ...

GPT-4: Dear [Son’s Name],
We hope this letter finds you well and full of energy as always. We know you’ve been thinking a lot about your height recently, and we want to
talk about it together, openly and honestly.

First, we want you to know how much we love you — just as you are. Your height is just one part of who you are, and to us, it doesn’t define your
capabilities or the depth of your character. ...

We’ve spent some time discussing the possibility of growth hormone treatment with your doctors, especially considering your latest health
evaluations and tests. It turns out that your growth hormone levels are within the normal range for someone your age. ... This suggests that your
body is developing just fine on its own.

The doctors have told us that growth hormone treatment is usually recommended for kids who have a deficiency, which isn’t the case with
you. ... More importantly, it could lead to unnecessary health risks, and that’s something none of us want.

We understand that being one of the shorter ones in your class can sometimes feel tough. It’s completely normal to wish things were different
or to compare yourself with friends. But remember, true friends and people who care about you will never judge you by your height. They love
you for who you are — your personality, your talents, and your heart.

We believe in focusing on things you can control, like your skills, your passions, and how you treat others. These are the things that truly define
a person, not how tall they are. ... your height will never hold you back from achieving great things.

Let’s keep talking about this, okay? If you have more questions or ever feel down about it, we’re here for you. ...

B Instructing GPT-4 to Be an Insurance Company Representative 

Human: You are an insurance company representative. Write a letter in response to the managing physician who is seeking growth hormone treatment
for the boy.

C Instructing GPT-4 to Be the Boy’s Parents

Human: You are the parents of a boy. Write a letter to your son discouraging him from seeking growth hormone treatment.
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that could obscure transparent decision mak-
ing.28,29 Ultimately, a national task force recom-
mended a new equation that was refit without 
race to balance both performance and equity 
concerns.30-32 This example illustrates that even a 
simple clinical equation has many entry points for 
human values.

Values Embedded in LLMs

In contrast to clinical equations with few predic-
tor variables, LLMs may be composed of an in-
scrutable combination of tens to hundreds of 
billions of parameters (model weights) or more. 
We say “inscrutable” because the exact way that 
a query leads to a response in most LLMs is not 
mappable. The parameter count of GPT-4 is un-
disclosed; its predecessor GPT-3 has 175 billion 
parameters.33 More parameters do not necessar-
ily equate with more capability, because smaller 
models that are subject to more compute cycles, 
such as the LLaMA (Large Language Model Meta 
AI) family of models,34 or models that are care-
fully fine-tuned with human feedback can out-
perform their larger counterparts. For example, 
the InstructGPT model (a 1.3-billion parameter 
model)35 outperformed GPT-3 as assessed by hu-
man raters in preferred model outputs.

The exact training details of GPT-4 are not 
publicly available, but details for predecessor 
models including GPT-3, InstructGPT, and many 
other open-source LLMs have been published. 
Many AI models now come with model cards36; 
evaluation and safety data for GPT-4 have been 
released in an analogous System Card37 provided 
by the creator of the model, OpenAI. The cre-
ation of LLMs can be broadly divided into two 

phases: an initial pretraining phase followed by 
a fine-tuning phase to refine the model out-
put.38 In the pretraining phase, large corpora, 
including raw internet text, are provided to the 
model, which is trained to predict the next 
word. This seemingly simple “autocomplete” 
process yields a powerful base model but one 
that may also result in harmful behavior. Val-
ues enter this pretraining phase with respect to 
the choice of the pretraining data for GPT-4, as 
well as the decision to scrub inappropriate con-
tent such as erotic material from the pretraining 
data.37 Despite these efforts, the base model 
may be neither useful nor free of harmful out-
put.37 It is in the next phase of fine-tuning when 
much of the useful and nontoxic behavior 
emerges.

In the fine-tuning phase, supervised fine-
tuning and reinforcement learning from human 
feedback are used to change, often profoundly, 
the behavior of the language model. In the su-
pervised fine-tuning phase, hired human con-
tractors write example responses to prompts 
that directly train the model. In reinforcement 
learning from human feedback, human raters 
rank model outputs for example inputs. These 
comparisons are then used to learn a “reward 
model” that further improves the model by 
means of reinforcement learning.35 A surpris-
ingly modest level of human participation can 
fine-tune these large models. For example, the 
InstructGPT model used a team of approximate-
ly 40 human contractors, who had been recruit-
ed from crowd-sourcing websites and had passed 
a screening test that was used to “select a group 
of labelers who were sensitive to the preferences 
of different demographic groups.”35 With LLMs 
such as GPT-4, further complexity emerges from 
the infinite ways in which the model can be 
“steered” (Fig. 1) to encode values long after the 
model is first trained.6 Many of these same con-
siderations of how human values shape general-
purpose LLMs apply not only to GPT-4 but also 
to the ecosystem of competing LLMs39 produced 
by other organizations. There is also a growing 
cadre of medical LLMs (e.g., the Med-Gemini 
model developed by Google).40 Finally, we note 
that LLMs will often not be used in a stand-alone 
manner but rather will be used after they have 
been customized and embedded in a larger sys-
tem, thereby creating further entry points for 
values.

Figure 1 (facing page). How Contemporary Artif icial  
Intelligence Models May Be “Steered” to Capture  
Different Human Values.

Large language models (LLMs), such as Generative 
Pretrained Transformer 4 (GPT-4), encode human values 
on the basis of both their training data and how they 
are subsequently tuned. As this example illustrates, 
LLMs can further be powerfully “steered” to adopt 
different roles. In this example, the human prompts 
are about an identical case involving a 14-year-old boy 
who is being considered for growth hormone treatment. 
GPT-4 is instructed to adopt three different perspec-
tives: the treating physician (Panel A), an insurance 
company representative (Panel B), and the boy’s par-
ents (Panel C). GPT-4 was used during May 2024; 
model outputs are abridged to fit the figure panels.

The New England Journal of Medicine is produced by NEJM Group, a division of the Massachusetts Medical Society.
Downloaded from nejm.org by JOSE BUFILL on March 9, 2025. For personal use only. 

 No other uses without permission. Copyright © 2024 Massachusetts Medical Society. All rights reserved.



n engl j med 390;20  nejm.org  May 30, 20241900

T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

As illustrated by these two extreme examples 
(i.e., a simple clinical equation [eGFR] and a 
powerful LLM [GPT-4]), human decisions and 
therefore human values play an indispensable 
role in shaping model outputs. Do these AI mod-
els capture patient and physician values, which 
themselves may be quite varied? How can we 
openly guide the implementation of AI in medi-
cine? As described below, a principled approach 
to these questions may arise from revisiting 
medical decision analysis.

Me a sur ing Hum a n Va lues

Medical Decision Analysis

Although unfamiliar to many practicing clini-
cians, medical decision analysis provides a sys-
tematic approach to complex medical decisions 
by disentangling probabilistic reasoning about 
uncertain outcomes related to a decision (e.g., 
whether to administer human growth hormone 
in the controversial clinical scenario presented 
in Fig. 1) from considerations of the subjective 

How representative are the 
data?

What biases are introduced by
preprocessing (e.g., the way 
data are filtered)?

Choice of hand-selected
features including blood
biomarkers, demographics,
and clinical variables to
predict atherosclerotic 
cardiovascular disease risk

Choice of geographic 
regions to determine 
global range of “normal” 
variation for pulmonary 
function tests

Choice of massive 
corpora to train LLMs 
and how to filter to 
remove content

Choice of populations 
used in developing 
computer vision model 
for chest radiographs

Choice to use or 
remove race 
(categorized as 
Black vs. Non-Black) 
in kidney function 
estimation

Choice of target 
variable and 
acceptable margin 
of error

Choice of optimal cutoff 
point for a PSA test

Choice of how to “steer” LLM during use

Choice of how to categorize diabetic retinopathy in 
computer vision model

Choice of fine-tuning methods (e.g., supervised fine-tuning 
and reinforcement learning from human feedback)

Training Data

How are protected attributes 
(e.g., race) used explicitly or 
implicitly?

What values are used to refine
model output?

Model Development

What are the costs of false
positives and false negatives?

What should be the bounds
of model use?

Model Use

Examples of Questions to 
Elucidate Human Values

Traditional
Clinical Equations

AI
Models

BlackRace

Non-Black

Ta
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Figure 2. Entry Points and Choices for Human Values in Traditional Clinical Equations and New Artificial Intelligence Models.

In both traditional clinical equations (e.g., the estimated glomerular filtration rate [eGFR]) and new artificial intelligence models (e.g., 
LLMs), human values enter at every stage, including in choices about training data, model development, and model use. Although the 
examples are highly varied, often the same questions (left column) can be used to elucidate human values in both traditional clinical 
equations (center column) and newer AI models (right column). PSA denotes prostate-specific antigen.
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values attached to those outcomes, which are 
quantified as “utilities” (e.g., the value of an ad-
ditional 2 cm of height to the boy). In decision 
analysis, a clinician must first identify all poten-
tial decisions and probabilities associated with 
each outcome and then incorporate the utilities 
of the patient (or other party) that are attached 
to each outcome in order to select the most ap-
propriate choice. As a result, the validity of a deci-
sion analysis depends on how comprehensively 
the outcomes are specified, as well as how well 
the utilities are measured and probabilities are 
estimated. Ideally, this method can help ensure 
that decisions are evidence-based and aligned 
with patient preferences, thereby bridging the gap 
between objective data and personal values. This 
approach was introduced to medicine decades 
ago7,10 and has been applied to both individual 
patient decisions41 and population health evalua-
tions such as recommendations for colorectal 
cancer screening in the general population.42

Although we do not foresee physicians dra-
matically altering diagnostic practice using deci-
sion analysis in the era of LLMs, the core prin-
ciple of utility elicitation offers lessons on 
aligning AI models for medicine. These lessons 
include the fundamental incompatibility of utili-
ties from competing parties,43 the importance of 
how information is presented,44 and the benefits 
of enumerating and measuring both probabili-
ties and utilities even when uncertainty remains 
in both.10

Utility Elicitation

Many methods have been developed in medical 
decision analysis to obtain utilities. Most con-
ventional ways of doing so involve direct elicita-
tion of the value from the individual patient. The 
simplest approach is to use a rating scale, 
whereby patients score their preferences for an 
outcome on a numeric scale, such as a linear 
rating scale ranging from 1 to 10, with the most 
extreme health outcomes (e.g., perfect health 
and death) on either end.45 Time trade-off is 
another commonly used method. Here, patients 
are asked to make decisions about how much 
time in good health they would trade for a quan-
tity of time in a lesser health state. The standard 
gamble is another popular approach for deter-
mining utilities. Here, patients are asked for 
their preference between two options: either 
they live for a certain number of years (t) in a 

normal health state at a given probability (p) and 
risk of dying at a probability of 1 − p or they live 
t years in a lesser state of health with certainty. 
Patients are asked this multiple times at differ-
ent values of p until they do not show any prefer-
ence toward either option, thereby allowing the 
calculation of a utility based on the response.45

In addition to methods for eliciting the pref-
erences of individual patients, methods for ob-
taining the utilities of a group of patients have 
also been developed. In particular, focus-group 
discussions, in which patients are brought to-
gether to discuss a specific experience, can be 
useful in understanding their perspectives.46,47 
To effectively aggregate the utilities from a 
group, many structured group-discussion tech-
niques have been proposed. For example, the 
nominal group technique allows participants to 
write down their thoughts and preferences inde-
pendently, followed by idea sharing and group 
discussion. Finally, the preferences of the group 
are aggregated by a voting process.48 Although 
these structured discussion techniques can over-
come issues of groupthink, there are inherent 
limitations in the voting procedures for obtain-
ing group preferences.43 In addition, as is true of 
all such exercises, the aggregated decision is not 
necessarily reflective of individual preferences.49

In practice, the elicitation of utilities directly 
during a clinical encounter is time-consuming. 
As a solution, population-level utility scores are 
commonly obtained with the use of question-
naires sent to a randomly selected portion of the 
population. Some examples of these are the 
EuroQol Group 5-Dimension questionnaire,50 
the Short-Form 6-Dimension utility weights,51 the 
Health Utilities Index,52 and the cancer-specific 
European Organization for Research and Treat-
ment of Cancer Quality-of-Life Questionnaire-
Core 30 instrument.53 From large surveys, popu-
lation-level utilities can be generated with the 
use of methods such as the time-trade-off 
method and the standard gamble. The discrete 
choice experiment is another survey-based meth-
od for understanding preferences. Here, patients 
are given a series of choices to choose between, 
from which quantitative health utilities can be 
calculated.54 In each of these approaches, a util-
ity of the patient may differ from a utility of the 
group, which raises the issue of individual au-
tonomy when group-derived utilities are applied 
to individual patients.
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The examples from medical decision analysis, 
current methods for utility elicitation, and their 
limitations point to several unresolved issues 
and key questions for contemporary AI models 
in medicine. Three such issues are discussed 
below.

Whose Values Should Be Encoded?

As discussed above, human values can pro-
foundly shape the inputs and outputs of both 
simple clinical regression models and advanced 
AI models. For example, with LLMs, fine-tuning 
methods, including supervised fine-tuning and 
reinforcement learning from human feedback, 
refine LLM outputs on the basis of human input 
from crowd-sourced workers who had been 
hired and instructed by the model developers. 
This transmutes the question of “which” values 
are encoded in models to “whose” values are 
encoded. The values that should govern the 
range of model behavior in clinical care and the 
health care system remain unresolved, but ef-
forts to develop principles for responsible medi-
cal AI are under way.55,56 The potential biases 
from crowd-sourced inputs and the variability in 
values across cultures further compound this 
challenge. Studies that develop and evaluate AI 
in areas where resources may be limited, includ-
ing low- and middle-income countries, are need-
ed.57,58 Emerging work characterizing the “psy-
chology” of LLMs is promising.59 Future studies 
of AI in realistic clinical settings that rigorously 
evaluate how AI affects human decision making 
and skill development are urgently needed.60,61 
Undoubtedly, such studies will both rediscover 
and exploit many lessons from the psychology 
literature about human cognitive biases and 
heuristics that both enhance decision making 
and lead it astray.8

Dataset Shift

Dataset shift62 refers to changes in the data 
characteristics that can undermine the accuracy 
and reliability of AI models. Such shifts can 
arise because of evolving medical practices, de-
mographic changes in the population, and the 
emergence of new diseases. When human values 
are incorporated into AI systems, shifts in soci-
etal values and differences in values among 

subpopulations can lead to inappropriate treat-
ment recommendations, poor alignment with 
common societal expectations, and a potential 
loss of trust in AI-driven tools among both clini-
cians and patients.63 Ensuring that models are 
periodically retrained and that model outputs 
are regularly monitored can help foster the safe 
and effective application of AI in medicine,64-66 
as with non-AI diagnostic tests and proce-
dures.67,68 AI governance teams can also help 
provide oversight,69,70 and agencies worldwide 
are grappling with how to regulate AI models, a 
challenge that will become more complex with 
foundation models71,72 and models that can rea-
son over multiple data types.73-75 Finally, consid-
erations of the values of individual patients may 
cause physicians to ignore or override AI recom-
mendations; the liability implications remain an 
active focus by legal scholars.76 As medical AI 
becomes more integrated into care, recognizing 
and mitigating the risks associated with dataset 
shift will be paramount in aligning AI outputs 
with human values.

Alternatives to Direct Utility Measurement

Although the utility elicitation methods de-
scribed above can obtain human values, they are 
often limited to well-controlled study settings 
and miss the nuances of decision making as 
persons grapple with health care scenarios in 
the real world. They can also be sensitive to 
framing and context,44 biased,77,78 and difficult 
to scale. Decision-curve analysis79,80 is an alter-
native paradigm to evaluate diagnostic tests and 
predictive models without requiring explicit util-
ity elicitation. Another emerging line of research 
uses data-driven methods to extract human val-
ues and integrate them as long-term objectives 
in order to support continual learning that may 
adapt to shifting data and values.

The discipline of reinforcement learning de-
velops methods to guide a computer “agent” 
toward learning what actions to take in a given 
state and environment in order to maximize a 
specified reward. Reinforcement learning from 
human feedback is one example of reinforce-
ment learning. A key component is the reward 
function, which quantifies the desirability of 
each state. Given the myriad clinical scenarios 
and patient-specific utility variations, crafting 
this function is challenging but remains an 
active frontier.
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Conclusions

At every stage of training and deploying an AI 
model, human values enter. AI models are far 
from immune to the shifts and discrepancies of 
values across individual patients and societies. 
Past utilities may no longer be relevant or even 
reflect pernicious societal biases. Our shared 
responsibility is to ensure that the AI models we 
deploy accurately and explicitly reflect patient 
values and goals. As noted by Pauker and Kas-

sirer in the Journal more than three decades ago 
in reviewing progress in medical decision analy-
sis,10 “the threat to physicians of a mathematical 
approach to medical decision making simply has 
not materialized.” Similarly, rather than replac-
ing physicians, AI has made the consideration of 
values, as reflected by the guidance of a thought-
ful physician, more essential than ever.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.
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